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Abstract

For solving partial differential algebraic equations (PDAEs), the space–time conservation element/solution element (CE/SE) method is
addressed in this study. The method of lines (MOL) using an implicit time integrator is compared with the CE/SE method in terms of
computational efficiency, solution accuracy and stability. The space–time CE/SE method is successfully implemented to solve PDAE systems
through combining an iteration procedure for nonlinear algebraic equations. For illustration, chromatographic adsorption problems including
convection, diffusion and reaction terms with a linear or nonlinear adsorption isotherm are solved by the two methods.

The CE/SE method enforces both local and global flux conservation in space and time, and uses a simple stencil structure (two points at the
previous time level and one point at the present time level). Thus, accurate and computationally-efficient numerical solutions are obtained.
Stable solutions are guaranteed if the Courant–Friedrichs–Lewy (CFL) condition is satisfied. Solutions to two case studies demonstrate that
the CE/SE numerical solutions are comparative in accuracy to those obtained from a MOL discretized by the 5th-order weighted essentially
non-oscillatory (WENO) upwinding scheme with a significantly shorter calculation time.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In selecting a numerical method for solving a system
of partial differential equations (PDEs), one often needs to
make some compromises in the method’s accuracy, effi-
ciency and robustness. As an example, for the sake of higher
efficiency and robustness, often one is forced to choose a
solver with less accuracy. However, as will be shown in the
following study which involves the method of lines (MOL)
and the space–time conservation element and solution el-
ement (CE/SE) method, in some rare cases, such a forced
compromise may not be necessary.

In the framework of the method of lines (MOL), PDEs
or PDAEs are converted to an ordinary differential equa-
tion (ODE) or differential algebraic equation (DAE) system
in the temporal space after spatial discretization. The ODE
(or DAE) time integrator (e.g. Gear-type algorithms) gives
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high accuracy solutions with respect to time through adjust-
ing the time step-size (�t) adaptively to the stiffness of the
ODE/DAE system considered. For the numerical solution
of practical chemical processes,Lim, Le Lann, and Joulia
(2001a)andLim et al. (2002)have implemented high res-
olution upwinding schemes (e.g. WENO scheme,Jiang &
Shu, 1996) within the framework of the MOL. However, nu-
merical dissipation caused by spatial discretization can still
be substantial in the presence of steep fronts when the num-
ber of mesh points is insufficient. To capture the steep front,
moving mesh methods using the MOL were examined. How-
ever, such approaches generally require long computational
times because of strong coupling and non-linearity between
original physical PDEs and mesh equations added for mesh
calculation (Lim, Le Lann, & Joulia, 2001b).

Many physical problems are modeled with Partial Differ-
ential Algebraic Equation (PDAE) systems. For example, the
packed-bed chromatographic separation can be described by
convection-dominated parabolic Partial Differential Equa-
tions (PDEs) for mass conservation in the mobile phase,
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Nomenclature

ai activity in the liquid phase (mol/l)
āi activity in the solid phase (mol/l)
B Debye–Hückel model parameter (kg/mol)
Ci concentration in fluid phase (mol/l)
Cin entrance concentration of fluid

at z = 0 (mol/l)
Cout exit concentration of fluid atz = zf (mol/l)
Dax axial dispersion coefficient (m2/s)
E2 two-dimensional Euclidean spaces
F̃ n
j approximated conservation fluxes in CE(j, n)

f fluxes
ft ∂f/∂t
fu ∂f/∂u
fz ∂f/∂z
g adsorption isotherm function inEq. (1)
h vector,h = (f, u)

I ionic strength (mol/kg-solvent)
j subscript for mesh positions
J number of non-zero Jacobian elements
k effective adsorption rate coefficient (s−1)
Kji equilibrium constant betweeni–j

components
Lc column length (m)
m adsorption heat (kcal/mol)
mi molarity (mol/kg-solvent)
Mw molecular weight (g/mol)
n superscript for time levels
nnn outward normal vector of a surface

element onS(V)
n∗
i equilibrium concentration in interface

between two phases (mol/l)
ni concentration in solid phase (mol/l)
n̂i hindered salt ion concentration (mol/l)
nT resin capacity (eq./l)
Nmesh number of mesh points
Ntime number of time steps
p source terms
P̃nj approximated source term fluxes in CE(n, j)
R gas constant (kcal/(K mol))
s values obtained at previous time level

in Eq. (10)
Si shape factor
S(V) boundary of an arbitrary space–time regionV
t time (s)
�t uniform time step size (s)
T temperature (K)
u state variables
ut ∂u/∂t
uz ∂u/∂z
vL fluid velocity (m/s)
V space–time region inE2
yi molar fraction of equilibrium concentrations

z axial direction of column (m)
zi ion valence
z± positive or negative charge of salt
�z uniform spatial step size (m)

Greek letters
α phase ratio of solid volume to fluid volume

(kg/l-resin)
αij Boltzmann weighting factor
εb bed voidage
γi activity coefficient in the liquid phase
γ̄i activity coefficient in the solid phase
ν CFL number
ρr wet resin density (kg/l-resin)
σ area of a surface element onS(V) or steric

factor (or hindered-salt ion ratio)
ωi surface fraction

Ordinary Differential Equations (ODEs) for the solute ad-
sorption rate in the stationary phase, and eventually Alge-
braic Equations (AEs) for the adsorption isotherm between
the two phases. Thus, they lead to a nonlinear and coupled
PDAE system which is often solved, after discretization of
spatial derivatives, by ODE/Differential Algebraic Equa-
tion (DAE) time-integrators in the framework of the MOL
(Beste, Lisso, Wozny, & Arlt, 2000; Dunnebier, Weirich,
& Klatt, 1998; Ma & Wang, 1997; Melis, Markos, Cao,
& Morbidelli, 1996). However, the solution procedure
may be inadequate for multi-component and -dimensional
systems since the DAE system obtained from spatial dis-
cretization of the PDAEs can be steep in the axial di-
rection, large in the Jacobian matrix size, nonlinear be-
tween state variables, iterative in the solution procedure
or numerically-dissipative. Therefore, a new numerical
method, such as the one presented here, is needed to en-
hance accuracy and computational efficiency.

For the numerical solution of conservation laws (e.g.
PDEs),Chang and To (1991)proposed a new method, the
so-called space–time Conservation Element and Solution
Element or the CE/SE method for short, which is accurate
even at discontinuities and is computationally efficient. By
using the Gauss’s divergence theorem, the CE/SE method
enforces both local and global flux conservation in space and
time. Also because each CE/SE scheme is developed from
a non-dissipative core scheme, its numerical dissipation
can be effectively controlled. While the MOL with a stiff
DAE time integrator (e.g. DASSL,Petzold, 1983; SPRINT,
Pennington & Berzins, 1993; LSODI, Hindmarsch, 1980)
has an implicit feature with variable time steps and re-
quires much computational time on fine meshes, the CE/SE
method is an explicit time-marching scheme with a sim-
ple stencil structure (two points at the previous time level
and one point at the present time level) and, as such, is
more computationally efficient. Rather than a compromise
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between accuracy and computational efficiency in the
numerical method selection, higher accuracy as well as
efficiency can, consequently, be achieved by the novel
method.

In spite of the fact that the schemes constructed using the
space–time CE/SE method generally are 2nd-order or less
in accuracy (Chang & To, 1991; Chang, Wang, & To, 2000),
the new method has been used to obtain highly accurate
numerical solutions for 1D, 2D, and 3D conservation laws
involving shocks, boundary layers or contacting disconti-
nuities (Chang, 1995; Chang, Wang, & Chow, 1999). The
Courant number insensitive Scheme II (Chang, 2002) has
recently been proposed for the Euler equations (e.g. convec-
tion PDEs for mass, momentum and energy conservation).
Thea–µ scheme (Chang, 1995) has been developed for the
Navier–Stokes equations (e.g. convection–diffusion PDEs
for mass, momentum and energy conservation). An implicit
solver for boundary value problems (Chang, Wang, Chow,
& Himansu, 1995), multi-dimensional CE/SE (Chang et al.,
1999; Zhang et al., 2002), local mesh refinement (Chang,
Wu, Wang, & Yang, 2000) and stiff source term treatment for
convection-reaction PDEs (Yu & Chang, 1997) have been
presented for the space–time CE/SE method. For any reader
who is interested in the CE/SE simulation, the Fortran code
is available inChang (1995, 2002).

Molls and Molls (1998)used the CE/SE method to solve
the 1D/2D Saint Venant equations. Here, a modified CE/SE
method (i.e. non-iterative formulae) was proposed for solv-
ing PDEs including source terms (or reaction terms).Motz,
Mitrovic, and Gilles (2002)successfully applied this method
to solve a population balance equation described by a hyper-
bolic integro-PDE, where superior numerical performance
of the CE/SE method is shown over a method of lines with
a flux-limited finite volume scheme.

Finally note that, in addition to the MOL and the CE/SE
method discussed here, there are other reputable methods
which could be used to solve the same sample problems to
be presented in this study. A good source of references in
this respect is the paper byPoulain and Finlayson (1993).
Moreover, numerical comparisons of the CE/SE method and
other established methods (e.g. MacCormack method) can
also be found inChang et al. (2000).

The present study addresses an extension of the CE/SE
method of Chang (2002)to PDAE systems. In the next
section, the CE/SE method is reformulated for PDAE sys-
tems, illustrating the packed-bed chromatographic separa-
tion problem. Numerical studies follow inSection 3.

2. Space–time CE/SE method

The CE/SE method has many non-traditional features, in-
cluding a unified treatment of space and time, the introduc-
tion of conservation element (CE) and solution element (SE)
and a novel shock capturing strategy without special tech-
niques.

Consider a packed-bed chromatographic adsorption be-
tween the stationary and mobile phases. The PDAE system
involves one PDE, one ODE and one AE:

∂C

∂t
+ α

dn

dt
+ ∂(vLC)

∂z
− ∂

∂z

(
Dax

∂C

∂z

)
= 0 (1a)

dn

dt
= k(n∗ − n) (1b)

0 = g(C, n∗) (1c)

wherevL is the interstitial velocity,Dax the axial dispersion
coefficient,α the volume ratio between the two phases and
k refers to the mass transfer coefficient. The liquid and solid
concentrations for each component are referred to asC
andn, respectively.n∗ is the equilibrium concentration (or
adsorption isotherm).Candn∗ is related by the functional re-
lation Eq. (1c)whose exact form used in the numerical sim-
ulations is case-dependent. Since the Peclet number for axial
diffusion (ratio of convection to diffusion,Pe= vLLc/Dax)
is often large in chromatographic processes (Poulain &
Finlayson, 1993), Eq. (1) is classified as a convection-
dominated parabolic PDAE system. The extension to the
PDAE system is derived from the original CE/SE method
(Chang, 1995) and Scheme II (Chang, 2002), introducing
CEs and SEs.

2.1. Conservation elements (CEs) and solution elements
(SEs)

As a preliminary, let state variables (u), fluxes (f) and
source terms (p) in Eq. (1):

u =



u1

u2

u3


 ≡



C + αn

n

0


 (2a)

f =



f1

f2

f3


 ≡



vLC −Dax

∂C

∂z
0

0


 (2b)

p =



p1

p2

p3


 ≡




0

k(n∗ − n)

g(C, n∗)


 (2c)

Let (i) hm=def(fm, um), m = 1–3; (ii) ∇=def(∂/∂z, ∂/∂t),
i.e. ∇ is the divergence operator in a two-dimensional Eu-
clidian spaceE2 in which x1 = z andx2 = t are the space
and time coordinates. Then the three component equations
referred to above can be expressed as:

∇ · hm = pm, m = 1–3 (3)

By using Gauss’s divergence theorem inE2, it can be shown
thatEq. (3)is the differential form of the integral conserva-
tion law:∮
S(V)

hm ds =
∫
V

pm dV, m = 1–3 (4)
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where (i) S(V) is the boundary of an arbitrary space–time
regionV in E2; (ii) ds = dσnnn with dσ andnnn, respectively,
being the area and the outward normal vector of a surface
element onS(V). Note that, becausehm ds is the space–time
flux of hm leaving the regionV through the surface element
ds, Eq. (4) simply states that, for eachm = 1–3, the total
space–time flux ofhm leavingV throughS(V) is equal to the
integral of pm over V. Also, since, inE2, dσ is the length
of a differential line segment on the simple closed curve
S(V), the surface integral on the left side ofEq. (4) can be
converted into a line integral. In fact,Eq. (4) is equivalent
to (Chang, 1995):∮ c.c.

S(V)

(−um dz+ fm dt) =
∫
V

pm dV, m = 1–3 (5)

where the notation c.c. indicates that the line integral should
be carried out in the counterclockwise direction.

At this junction, note that the CE/SE method is de-
veloped to model space–time conservation laws such as
those represented byEq. (4). As will be shown shortly,
its nontraditional features include: (i) a unified treatment
of space–time; (ii) the introduction of conservation ele-
ments (CEs) and solution elements (SEs) as the vehicles
for enforcing conservation laws; (iii) the requirement that
a numerical scheme be built from a non-dissipative core
scheme such that the numerical dissipation can be effec-
tively controlled; (iv) the requirement that the mesh values
of the state variables (um) and their spatial derivatives
(∂um/∂z) be considered as independent marching variables
to be solved for simultaneously; and (v) a time marching
strategy that has a space–time staggered stencil at its core
and, as such, can capture shocks without using Riemann
Solvers.

In Fig. 1, the mesh points (e.g. points A, C and E) are
marked by circles. They are staggered in space–time. Any
mesh point (j, n) is associated with a solution element SE(j,
n) and two conservation elements CE−(j, n) and CE+(j,
n). By definition, SE(j, n) is the interior of the shaded
space–time region depicted inFig. 1(a). It includes a hor-
izontal line segment, a vertical line segment, and their im-
mediate neighborhood (Chang, 1995). Also, by definition,
(i) CE−(j, n) and CE+(j, n), respectively, are the rectangles

(a) Space-time staggered grid near SE(j,n) (b) CE-(j,n) and CE+(j,n)
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Fig. 1. The solution element (SE) and conservation element (CE) atjth position andnth time level (Chang, 1995).

ABCD and ADEF depicted inFig. 1(a) and (b); and (ii)
CE(j, n) is the union of CE−(j, n) and CE+(j, n), i.e. the
rectangle BCEF.

Let the coordinate of any mesh point (j, n) be (zj, tn) with
zj = j �z and tn = t �z. Then, for any(z, t) ∈ SE(j, n),
um(z, t), fm(z, t) andhm(z, t), respectively, are approximated
by a 1st-order Taylor expansion:

ũm(z, t; j, n)def= (um)
n
j + (umz)

n
j (z− zj)+ (umt)

n
j (t − tn),

m = 1–3 (6)

f̃m(z, t; j, n)def= (fm)
n
j + (fmz)

n
j (z− zj)+ (fmt)

n
j (t − tn),

m = 1–3 (7)

and

h̃m(z, t; j, n)def= (f̃m(z, t; j, n), ũm(z, t; j, n)), m = 1–3

(8)

Here, (um)nj , (umz)
n
j , (umt)

n
j , (fm)

n
j , (fmz)

n
j and (fmt)

n
j are

constants in SE(j, n). They, respectively, can be considered
as the numerical analogues of the values ofum, ∂um/∂z,
∂um/∂t, fm, ∂fm/∂z and∂fm/∂t at (zj, tn), respectively.

Note that, according toEqs. (2a) and (2b), u3≡0, f2≡0
andf3≡0. As a result, it is assumed that

(u3)
n
j = (u3z)

n
j = (u3t)

n
j = 0 (9)

(f2)
n
j = (f2z)

n
j = (f2t)

n
j = 0 (10)

(f3)
n
j = (f3z)

n
j = (f3t)

n
j = 0 (11)

In the CE/SE framework,(umt)
n
j , (fm)

n
j , (fmz)

n
j and(fmt)

n
j ,

m = 1–3, are considered as functions of(um)
n
j and(umz)

n
j ,

m = 1–3. As a result ofEqs. (9)–(11), this general rule
implies that(u1t)

n
j , (u2t)

n
j , (f1)

n
j , (f1z)

n
j and(f1t)

n
j must be

considered as functions of(um)nj and(umz)
n
j , m = 1 and 2.

These functions will be defined immediately.
According toEq. (2a), C = u1 − αu2 and it implies that

Cz = u1z − αu2z (12)

where the subscript ‘z’ means the partial derivative with
respect to space (∂/∂z), as mentioned earlier. Combining
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Eqs. (2b) and (12), one has:

f1 = vL(u1 − αu2)−Dax(u1z − αu2z) (13a)

f1z = vL(u1z − αu2z)− ∂

∂z
Dax(u1z − αu2z) (13b)

f1t = vL(u1t − αu2t)−Dax(u1t − αu2t) (13c)

An obvious numerical version ofEq. (13a)is:

(f1)
n
j = vL((u1)

n
j − α(u2)

n
j )−Dax((u1z)

n
j − α(u2z)

n
j )(14a)

Also, by neglecting the contribution from 2nd-order deriva-
tives, the numerical versions ofEqs. (13b) and (13c)may
be taken as:

(f1z)
n
j = vL((u1z)

n
j − α(u2z)

n
j ) (14b)

(f1t)
n
j = vL((u1t)

n
j − α(u2t)

n
j ) (14c)

In order that(umt)
n
j , m = 1–3, can be determined in terms

of (umz)
n
j , m = 1–3, it is assumed that, for any(z, t) ∈

SE(j, n),

∇ · h̃m(z, t; j, n) = 0, m = 1–3 (15)

Thus, within SE(j, n), the contribution of the source term
(pm) that appears inEq. (3)is not modeled inEq. (15). Note
that (i) because it is the interior of a region that covers a hor-
izontal line segment, a vertical segment and their immediate
neighborhood, as mentioned earlier, SE(j, n) is a space–time
region with infinitesimal small volume; and (ii) as will be
shown, the contribution of source terms will be modeled in a
numerical analogue ofEq. (5). With the aid ofEqs. (6)–(8),
Eq. (15)implies:

(umt)
n
j = −(fmz)

n
j , m = 1–3 (16)

CombiningEqs. (9)–(11), (14) and (16), one has:

(u1t)
n
j = −(f1z)

n
j = −vL((u1z)

n
j − α(u2z)

n
j ) (17)

(u2t)
n
j = −(f2z)

n
j = 0 (18)

(u3t)
n
j = −(f3z)

n
j = 0 (19)

Furthermore, with the aid of (17) and (18),Eq. (14c)and
implies:

(f1t)
n
j = −v2

L((u1z)
n
j − α(u2z)

n
j ) (20)

Note that, by usingEqs. (10), (11), (14a), (14b), and
(17)–(20), (umt)

n
j , (fm)

n
j , (fmz)

n
j and (fmt)

n
j can be deter-

mined explicitly in terms of(um)nj and(umz)
n
j .

2.2. Discretization of PDAEs

As in the construction of many other dissipative 1D CE/SE
solvers, the current solver will be constructed without re-
quiring that the conservation lawsEq. (5) be enforced nu-
merically over both CE−(j, n) and CE+(j, n). Instead,Eq. (5)
will be enforced only over CE(j, n).

To proceed, note that, inFig. 1b, (i) BF belongs to SE(j,
n); (ii) CB andCD belong to SE(j − 1/2, n − 1/2); and
(iii) ED and EF belong to SE(j + 1/2, n − 1/2). Thus,
the boundary CE(j, n) (i.e. the rectangle BCEF depicted in
Fig. 1(a) and (b)is covered by the subsets of SE(j, n) and
SE(j±1/2, n−1/2). As s result, it can be shown inEq. (5)
that approximated conservation fluxes,F̃ n

j , is:

(F̃ )nj ≡
∮ c.c.

S(CE(j,n)
(−ũdz+ f̃ dt) (21)

With the aid ofEqs. (6) and (7), the line integral inEq. (21)
results in for each component ofF̃ n

j :

(F̃m)
n
j = 1

2�z[2(um)
n
j − (um)

n−1/2
j+1/2 − (um)

n−1/2
j−1/2

+(sm)n−1/2
j+1/2 − (sm)

n−1/2
j−1/2], m = 1–3 (22)

where

(sm)
n−1/2
j±1/2

def= �z

4
(umz)

n−1/2
j±1/2 + �t

�z
(fm)

n−1/2
j±1/2

+ �t2

4�z
(fmt)

n−1/2
j±1/2, m = 1–3 (23)

In addition, approximated source term fluxes (P̃nj ) are ob-
tained withinV(CE(j, n)):

(P̃)nj ≡
∫
V

(p)nj dV (24)

The volume integral inEq. (24)leads to for each component
of P̃nj :

(P̃m)
n
j = (pm)

n
j

∫ �z

0
dz

∫ �t/2

0
dt = �z�t

2
(pm)

n
j ,

m = 1–3 (25)

In the current study, the numerical analogue ofEq. (5)will
be taken as:

(F̃m)
n
j = (P̃m)

n
j , m = 1–3 (26)

With the aid ofEqs. (22) and (25), Eq. (26)implies that:

[2(um)
n
j −�t(pm)

n
j ] − [(um)

n−1/2
j+1/2 + (um)

n−1/2
j−1/2

− (sm)
n−1/2
j+1/2 + (sm)

n−1/2
j−1/2] = 0, m = 1–3 (27)

Using Eqs. (2) and (27), a discretized form ofEq. (1) is
given within CE(j, n) as follows:

(u1)
n
j = 1

2[(u1)
n−1/2
j+1/2 + (u1)

n−1/2
j−1/2 − (s1)

n−1/2
j+1/2 + (s1)

n−1/2
j−1/2]

(28a)

2(u2)
n
j −�tk((n∗)nj − (u2)

n
j )

= (u2)
n−1/2
j+1/2 + (u2)

n−1/2
j−1/2 − (s2)

n−1/2
j+1/2 + (s2)

n−1/2
j−1/2

(28b)

g((u1)
n
j − α(u2)

n
j , (n

∗)nj ) = 0 (28c)

Obviously, by usingEq. (28a), (u1)
n
j can be determined

explicitly in terms of the known mesh values at the(n −
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1/2) time level. Eq. (28b) and the equation obtained by
substituting the known value of(u1)

n
j into Eq. (28c)form a

system of two nonlinear equations for(u2)
n
j and(n∗)nj . This

system of equations can be solved by a Newton’s iteration
method.

Here,�z and�t are adjustable computation parameters.
How their values should be chosen is problem-dependent.
A small spatial step size (�z) should be chosen for a prob-
lem associated with steep moving fronts. Also, a small CFL
number (ν = vL �t/�z) is preferred for a problem that is
stiff with respect to time.

As explained earlier, in addition to(um)nj , m = 1–3, at
each mesh point (j, n), the independent discrete variables to
be solved also include(umz)

n
j , m = 1–3. Because(u3)

n
j ≡

0 and(u3z)
n
j ≡ 0, in the following, we will describe how

(umz)
n
j , m = 1 and 2, can be evaluated in terms of known

values of(um)
n−1/2
j±1/2, (umz)

n−1/2
j±1/2 and(um)nj , m = 1 and 2.

To proceed, note that the stability of a CE/SE scheme
requires that the CFL numberν < 1 (Chang, 1995). With-
out using special techniques that involve ad hoc parameters,
generally the numerical dissipation associated with a CE/SE
simulation with a fixed total marching time increases as the
CFL number decreases. As a result, for a small CFL number
(sayν < 0.1), a CE/SE scheme may become overly dissi-
pative. To overcome this shortcoming, a new CFL number
insensitive scheme, i.e. the so called Scheme II, was intro-
duced inChang (2002). The new scheme differs from other
CE/SE schemes only in how(umz)

n
j is evaluated. According

to Scheme II, we have:

(umz)
n
j =

[1 + f(|ν|)(rm−)nj ](ûmz+)nj
+[1 + f(|ν|)(rm+)nj ](ûmz−)nj

2 + f(|ν|)[(rm−)nj + (rm+)nj ]
, m = 1,2

(29)

where

f(|ν|)def= 0.5

|ν| (30)

(rm±)nj
def=

|(ûmz±)nj |
min(|(ûmz+)nj |, |(ûmz−)nj |)

− 1, m = 1,2 (31)

(ûmz±)nj = 4

�z

∓(um)nj ± [(um)
n−1/2
j±1/2 + (�t/2)(umt)

n−1/2
j±1/2

∓((1 − |ν|)�z/4)(umz)
n−1/2
j±1/2]

1 + |ν| ,

m = 1,2 (32)

Here, as explained inChang (2002), for eachm, (i) (ûmz+)nj
and (ûmz−)nj can be considered as the spatial derivatives
of um at the point (j, n) evaluated from the right and the
left, respectively; and (ii) the expression on the right side
of Eq. (29)represents an weighted average of(ûmz+)nj and
(ûmz−)nj .

Eq. (32)is reduced forEq. (1b)with the aid ofEq. (18)
into:

(û2z±)nj = 4

�z

∓(u2)
n
j ± [(u2)

n−1/2
j±1/2

∓((1 − |ν|)�z/4)(u2z)
n−1/2
j±1/2]

1 + |ν| (33)

Note that, because(u3)
n
j = (u3z)

n
j = 0, the only independent

discrete variables at any mesh point (j, n) are (um)nj and
(umz)

n
j ,m = 1 and 2, which can be evaluated usingEqs. (28)

and (29).
Consequently, the present CE/SE method withEqs. (27)

and (28)leads to a PDAE system which, at each time level,
is associated with a block diagonal Jacobian matrix. Let the
number of mesh points beNmesh. The maximum number of
non-zero Jacobian elements for the CE/SE method,J

CE/SE
max ,

is in Eq. (1):

J
CE/SE
max = (3 × 3)×Nmesh (34a)

In the case of linear source terms or without the source term,
the Jacobian matrix is further reduced to a diagonal form:

J
CE/SE
min = (1 × 1)×Nmesh (34b)

ForEq. (1), a band matrix is obtained, when a DAE integrator
is used in the framework of the method of lines (MOL).
Let the length of the upper and lower band matrix be MU
and ML, which depend on the size of spatial discretization
and nonlinearity of the PDAE considered. The maximum
number of non-zero band-Jacobian elements for the MOL
is known as form = 3:

JMOL
max = 3Nmesh(ML + MU + 1)− 1

2ML (ML + 1)

−1
2MU(MU + 1) (35a)

For example, in the simplest case that the convection term is
discretized by a 1st-order backward scheme and the diffusion
term by a central scheme inEq. (1), ML = MU = 3. The
smallest number of non-zero Jacobian elements in this case,
JMOL

min , can be approximated for the state variable (u) and its
time derivative (du/dt) at each time step:

JMOL
min ≈ (3 × 3)×Nmesh (35b)

As a result, the following relation can be derived:

J
CE/SE
min < J

CE/SE
max = JMOL

min ≤ JMOL (36)

Eq. (36) means that the number of non-zero Jacobian el-
ements for the MOL,JMOL, is not less thanJCE/SE

max . The
computational time is normally proportional to the number
of non-zero Jacobian elements (J) multiplied by the number
of time steps (Ntime), i.e.J×Ntime. Therefore, it is expected
that the computational time of the CE/SE method is shorter
than the MOL under the condition of the same number of
time steps. Especially for non-stiff systems (e.g. chromato-
graphic adsorption problems), the CE/SE method will save
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the computational time because the small number of time
steps can be used.

The stability of the CE/SE method is limited only by the
Courant–Friedrichs–Lewy (CFL) condition (Chang, 1995),
as mentioned earlier. If the fluid velocity (vL) is given, the
condition is expressed in term of the CFL number (ν =
vL �t/�z):

0 < |ν| < 1 (37)

While the implicit DAE integrator has self-adaptive feature
about the time step size (�t), the present CE/SE method has
a fixed value of�t satisfying the CFL condition.

2.3. Boundary condition treatment

Boundary conditions (atj = 1 andNmesh) for state vari-
ables (u) and its spatial derivatives (uz) are needed only at
each integer-time level (n = 0, 1, 2, 3,. . . ) in the space–time
CE/SE method. At each half-time level (n = 1/2, 1+ 1/2,
2 + 1/2, . . . ), these values (u and uz) for all mesh points
(j = 1 + 1/2,2 + 1/2, . . . , Nmesh− 1/2) are calculated
on the basis of these values of the previous time level (i.e.
integer-time level) without boundary values. Note that the
CE/SE method has a staggering mesh structure and intrin-
sically space–time triangle computational elements.

Without particular boundary conditions, the two boundary
conditions of first and last spatial points (z = 0 andz =
Lc) at each integer-time level are assumed as follows (for
simplicity, subscript ‘m’ of um andumz is omitted):

At z = 0, un1 = u
n−1/2
1+1/2, (uz)

n
1 = (uz)

n−1/2
1+1/2 (38a)

At z = Lc, unNmesh
= u

n−1/2
Nmesh−1/2,

(uz)
n
Nmesh

= (uz)
n−1/2
Nmesh−1/2 (38b)

The above equations mean that the first and last bound-
ary values (un1, u

n
Nmesh

, (uz)
n
1 and (uz)nNmesh

) at the present
time level (tn) are estimated by the first and last values
(un−1/2

1+1/2, u
n−1/2
Nmesh−1/2, (uz)

n−1/2
1+1/2 and(uz)

n−1/2
Nmesh−1/2) at the pre-

vious time level (tn−1/2).
Suppose that a boundary condition forEq. (1a)is imposed

as below:

At z = 0 and∀t, vL(C1 − Cin) = Dax(Cz)1 (39a)

At z = Lc and∀t, (Cz)Nmesh = 0 (39b)

whereCin is a known feed concentration just before entering
to the column. Due toEq. (39a)or Eq. (39b), one value of the
two boundary values (un1 and(uz)n1 or unNmesh

and(uz)nNmesh
)

remains unknown and must be assumed or given by the user.
A simple assumption is applied forEq. (39)as follows:

At z = 0 andn = 1,2,3, . . . ,

vL(C
n
1 − Cin) = Dax(Cz)

n
1, (Cz)

n
1 = Cn2 − Cin

2�z
(40a)

At z = Lc andn = 1,2,3, . . . ,

CnNmesh
= CnNmesh−1, (Cz)

n
Nmesh

= 0 (40b)

Note thatCn1 = (u1)
n
1 − α(u2)

n
1 in Eq. (40a)is calculated

linearly sinceCn2 = (u1)
n
2 − α(u2)

n
2 can independently be

obtained fromEq. (28).
For a recycle flow, consider a boundary condition instead

of Eq. (39a):

At z = 0 and∀t, vL(C1 − Cout) = Dax(Cz)1 (41)

whereCout is the outlet fluid concentration atz = Lc(j =
Nmesh). The condition is represented on discrete points in-
stead ofEq. (40a):

At z = 0 andn = 1,2,3, . . . ,

vL(C
n
1 − CnNmesh

) = Dax(Cz)
n
1, (Cz)

n
1 = Cn2 − CnNmesh

2�z
(42)

SinceCnNmesh
= (u1)

n
Nmesh

− α(u2)
n
Nmesh

is also obtained in-
dependently fromEq. (40b), Cn1 can be calculated directly.
Therefore, the boundary condition treatment (or recycle flow
handling) does not break the form of the block diagonal Ja-
cobian matrix, which is of great advantage to the MOL that
often leads to a sparse Jacobian matrix for the handling of
recycle flows.

3. Numerical studies

Two examples are tested. The first example is an
one-component chromatographic model with a linear ad-
sorption isotherm to reveal the properties of the CE/SE
method in comparison to the standard MOL (method of
lines). The system can simply be reduced to a PDE system
including one PDE and one ODE. However, a model in the
PDAE form is numerically solved with or without axial dis-
persion on 21 or 201 mesh points. The second example is
a two-component chromatographic model with non-linear
adsorption isotherms, which is also a PDAE system.

In the CE/SE method, the Newton–Rhapson algorithm
is employed to solve a system of nonlinear equations. The
absolute and relative tolerances for convergence are both
equal to 1.0 × 10−5 and 3–4 iterations are needed for a
satisfactory convergence.

For comparison with the CE/SE method, a Backward Dif-
ferentiation Formulae (BDF) DAE time integrator (Petzold,
1983) in the framework of the MOL (hereafter it is called
the MOL) is used with several spatial discretization meth-
ods. The convection term (1st-order spatial derivative) is
discretized by a two-point backward upwinding scheme
(1st-order upwind), a two-point central scheme (2nd-order
central), a six-point upwinding scheme (5th-order upwind),
a 3rd-order WENO upwinding scheme on a flexible sten-
cil (3rd-order WENO) and a 5th-order WENO upwinding
scheme on a flexible stencil (5th-order WENO). For the



8 Y.-I. Lim et al. / Computers and Chemical Engineering xxx (2003) xxx–xxx

diffusion term (2nd-order spatial derivative), a two-point
central discretization is employed. The detailed formulas
are presented inLim et al. (2001a). All the resulting DAE
systems are characterized by a band Jacobian matrix which
is numerically evaluated. In the BDF DAE integrator, the
absolute and relative tolerances are set equally to 1.0×10−5

for first example and 1.0 × 10−4 for the second example.
All simulations are performed on a single 1.3 GHz Athlon

processor equipped with 516 RAM. The computational time
(or CPU time) is the time required for a single task in the
computer. Accuracy is measured at a moment (t) or at a
position (z) by the L1-error defined as follows:

L1-error=
Nmesh(orNtime)∑

i=1

× |(ui)reference− (ui)computed|�z(or�t) (43)

where (ui)referenceis the high-accuracy numerical (reference)
solution and (ui)computedis numerical solutions evaluated by
the MOL or the CE/SE method. Instability is indicated by
spurious oscillatory behavior in the numerical solutions.

3.1. One-component chromatographic model with a linear
adsorption isotherm

The packed-bed chromatographic problem,Eq. (1), is
solved for one component with the volume ratioα = 1.5,
the fluid velocityvL = 0.1 m/s, the axial dispersion coeffi-
cientDax = 0 or 1.0 × 10−5 m2/s, and the adsorption rate
coefficientk = 0.0129 s−1. A linear adsorption isotherm is
used for the algebraic equation ofEq. (1c).

n∗ = 0.85C (44)

The column length is the interval 0≤ z ≤ 1.5 and the
integration time is 0≤ t ≤ 10 s. As the initial condition,
C(0, z) = 0, n(0, z) = 0 andn∗(0, z) = 0 for all z except
z = 0 andz = Lc. The two boundary conditions (z = 0 and
z = Lc) are given inEq. (39).

First,Eq. (1)without the diffusion term is solved(Dax =
0) and with a step input concentration atz = 0 (Cin = 2.2
for t ≥ 0.0). In the second and third tests, the diffusion term
is included withDax = 1.0 × 10−5. Here an inlet square
concentration pulse is considered as follows:

Cin = 2.2, for 0 s≤ t ≤ 2.0 s (45a)

Cin = 0.0, for 2.0 s≤ t ≤ 10.0 s (45b)

The numerical solutions are obtained on 201 or 21 equidis-
tant spatial mesh points. The CFL number for the CE/SE
method is given atν = 0.4.

In the first case (no diffusion and 201 mesh points),
the high-accuracy reference solution is obtained using a
5th-order WENO scheme on 301 mesh points (seeLim
et al., 2001a). In the second or third case (diffusion and
201 or 21 mesh points), the reference solution is obtained

Table 1
Accuracy, temporal performance and stability evaluation for a chromato-
graphic adsorption PDAE without axial dispersion on 201 mesh points

Accuracy
(L1 error)a

CPU
time (s)b

MOL 1st-order upwind 0.1307 0.9
2nd-order central 0.1140c 1.3
5th-order upwind 0.0218c 2.3
3rd-order WENO 0.0426 5.9
5th-order WENO 0.0252 9.5

CE/SE Scheme II
(CFL = 0.4)

Newton iteration 0.0185 1.2

a L1 error at t = 10 s.
b CPU time during 10 s integration time.
c Unstable numerical solution.

Table 2
Accuracy, temporal performance and stability evaluation for a chromato-
graphic adsorption PDAE with axial dispersion and square input concen-
tration on 201 mesh points

Accuracy
(L1 error)a

CPU
time (s)b

MOL 1st-order upwind 0.2075 1.6
2nd-order central 0.0979c 1.9
5th-order upwind 0.0060c 2.9
3rd-order WENO 0.0449 7.7
5th-order WENO 0.0168 11.3

CE/SE Scheme II
(CFL = 0.4)

Newton iteration 0.0087 1.3

a L1 error at t = 10 s.
b CPU time during 10 s integration time.
c Unstable numerical solution.

on 401 mesh points through the CE/SE method, where the
calculation time was 4.1 s.

Tables 1–3report numerical performance on accuracy,
computational efficiency and stability for the chromato-
graphic adsorption problem without or with axial disper-
sion on 201 or 21 mesh points. The 2nd-order central and
5th-order upwinding schemes give spurious oscillatory so-
lutions near steep regions. Thus, the two methods seem
to be inadequate for convection-dominated problems as

Table 3
Accuracy, temporal performance and stability evaluation for a chromato-
graphic adsorption PDAE with axial dispersion and square input concen-
tration on 21 mesh points

Accuracy
(L1 error)a

CPU
time (s)b

MOL 1st-order upwind 0.5423 0.04
2nd-order central 0.5430c 0.04
5th-order upwind 0.2385c 0.06
3rd-order WENO 0.4250 0.14
5th-order WENO 0.2945 0.12

CE/SE Scheme II
(CFL = 0.4)

Newton iteration 0.2450 0.02

a L1 error at t = 10 s.
b CPU time during 10 s integration time.
c Unstable numerical solution.
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Fig. 2. Fluid concentration (C) profiles according to numerical schemes nearz = 1.0 at t = 10 s for a chromatographic adsorption problem without axial
dispersion(Dax = 0) on 201 mesh points.

mentioned inLim et al. (2001a). The 1st-order upwinding
scheme (called 1st-order upwind) is not accurate because
of its low order of accuracy. The two WENO schemes
(3rd-order and 5th-order) enhance accuracy and stability but
at the cost of longer computation time. The CE/SE method
gives, in the three case studies, the most accurate solution
with very short calculation times in a stable manner.

In Fig. 2, numerical solutions of the fluid concentration
(C) are depicted nearz = 1.0 at t = 10 s for the adsorption
problem without axial dispersion. Its reference solution is a
discontinuous profile atz = 1. The CE/SE method shows the
best solution without spurious oscillation of the six schemes
tested. A smeared peak is shown for the problem with dis-
persion inFig. 3. As expected, 1st-order upwind is not ac-
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Fig. 3. Fluid concentration (C) profiles for different numerical schemes aroundz = 0.9 at t = 10 s for the single component chromatographic adsorption
problem with axial dispersion(Dax = 1.0 × 10−5) and square input concentration on 201 mesh points.

curate and 2nd-order central is highly oscillatory. The MOL
with 5th-order WENO and the CE/SE with CFL= 0.4 ex-
hibit similar resolution in steep regions without spurious os-
cillations.

On the 21 mesh points, numerical solutions are much less
accurate than those on the 201 mesh points (seeFig. 4).
However, it takes much less computational time, as reported
in Table 3. The 5th-order upwinding scheme seems to be
most accurate but gives spurious solutions, showing negative
concentrations before and after steep fronts.

One of the advantages for the CE/SE method is that the
numerical error does not accumulate with respect to time
and space at a fixed CFL number (or a space–time flux con-
servation feature), as mentioned above. Whereas, the error
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Fig. 4. Fluid concentration (C) profiles for different numerical schemes aroundz = 0.9 at t = 10 s for the single component chromatographic adsorption
problem with axial dispersion(Dax = 1.0 × 10−5) and square input concentration on 21 mesh points.

is amplified with time in traditional discretization schemes
(e.g. 1st-order upwind, 2nd-order central, and 5th-order up-
wind) in the framework of the MOL. Since the WENO
schemes for 1D problems are constructed by a finite volume
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Fig. 5. Fluid concentration (C) propagation with time for a chromatographic adsorption problem with axial dispersion on 201 mesh points (dashed line:
1st-order upwind, circles: 5th-order WENO, solid lines: CE/SE with CFL= 0.4).

approach, these schemes are also non-dissipative with time.
Fig. 5 shows the propagation of steep waves with time for
the second case on 201 mesh points. Note that the 5th-order
WENO scheme (circles) and the CE/SE method (solid line)
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Fig. 6. Fluid concentration (C) propagation with time for a chromatographic adsorption problem with axial dispersion on 21 mesh points (dashed line:
1st-order upwind, circles: 5th-order WENO, solid lines: CE/SE with CFL= 0.4).

have a non-dissipative feature, since the waves do not widen
with time. In contrast, the peak of the 1st-order upwinding
scheme (dashed line) broadens continually as time increases.

Fig. 6 depicts the wave propagation on 21 mesh points.
The oscillatory behavior of the 5th-order upwind scheme
(squares) is clear. The CE/SE method (solid line) is superior
in accuracy to the 5th-order WENO scheme (circles) for all
times.

3.2. Two-component chromatographic model with
nonlinear adsorption isotherms

An anion-exchange preparative chromatography is con-
sidered in an isocratic mode for Bovine Serum Albumin
(BSA) protein separation. A non-linear equilibrium (or
isotherm) model (Li & Pinto, 1995; Raje & Pinto, 1997) is
used to describe non-ideal solution behaviors for salts in
the liquid phase using an extended Debye–Hückel model
(Bromley, 1973) and non-ideality for proteins and salts
in the solid phase using a spreading-pressure-dependent
equation (Talu & Zwiebel, 1986).

In Appendix A, the adsorption isotherm model is pre-
sented and the model parameters are given for the BSA–
NaCl system. The experimental data for the adsorption

isotherms (Li & Pinto, 1995) are compared inFig. 7 with
results predicted by the model. The adsorption isotherms
are predicted forCNaCl = 0.207 mol/l within a reasonable
error bound.

Table 4shows design, operation and simulation parame-
ters used in this numerical study. Since solid concentrations
(ni andn∗

i ) have the units (mmol/kg-resin), the phase ratio
(α) in Eq. (1a)is defined as:

α = 1 − εb

εb
ρr (46)

whereεb is the bed voidage andρr the resin density with the
value given inTable 4. The resin is initially saturated with
chloride ions (Cl−). Note that mass transfer coefficient (k)
should have the same value for the two components (BSA
and Cl−) in order to satisfy the electro-neutrality condition.

nT = n1(z1 + σz2)+ z2n2 (47)

wherenT is the total resin capacity,z1 and z2 are the ion
valences for BSA and Cl−, respectively.σ is the steric factor
for the BSA–NaCl system. Note thatEq. (47) in the solid
phase corresponds toEq. (A.6) on the interface or resin
surface (seeAppendix A).
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Fig. 7. Experimental data inLi and Pinto (1995)and model prediction (m = 18.0 andσ = 24.0) for BSA equilibrium isotherms atCNaCl = 0.207 mol/l.

ReplacingEq. (1c)with Eq. (A.13)involvingEqs. (A.1)–(A.12),
the resulting PDAE system to be solved contains two PDEs,
two ODEs and two AEs. That is,Eq. (2) is reformulated:

u =




C1 + αn1
n1

0

C2 + αn2

n2

0




(48a)

f =




vLC1 −Dax
∂C1

∂z
0

0

vLC2 −Dax
∂C2

∂z
0

0




(48b)

Table 4
Design, operation and simulation parameters in a BSA ion-exchange preparative chormatography

Design parameters Operating conditions Simulation parameters

Lc (cm) 25 Q (ml/min) 1 k (min−1) k1 = k2 = 6.0
i.d. (cm) 0.46 vL (cm/min) 7.57 Dax (cm2/min) 1.89× 10−4

εb 0.7947 T (◦C) 35.4 Nmesh 201

nT (meq./kg-resin) 360 C0 (mmol/l) C1 = 0, n1 = 0 ν (=vL(�t/�z)) 0.73
n0 (meq./kg-resin) C2 = 207, n2 = nT

a

ρr (kg/l-resin) 3.65b Cin (mmol/l) C1 = 0.889,C2 = 207 for 0 s≤ t ≤ 0.5 s t (min) 60
C1 = 0, C2 = 207 for 0.5 s≤ t ≤ 60 s

a 1st-component: BSA, 2nd-component: NaCl.
b Wet resin density (ρr) is based on the particle volume including the pore volume.

p =




0

k(n∗
1 − n1)

g1(C1, C2, n
∗
1, n

∗
2)

0

k(n∗
2 − n2)

g2(C1, C2, n
∗
1, n

∗
2)




(48c)

where subscripts ‘1’ and ‘2’ means component-1 (BSA) and
component-2 (Cl−), respectively. Thus,C1 = u1 − αu2 and
C2 = u4 −αu5. The model parameters are given inTable 4.

The system of equations discretized in the framework of
the CE/SE method leads to a(6×6) block diagonal Jacobian
matrix of the lengthNmeshat each time level (JCE/SE

max = (6×
6)×Nmesh). Each block Jacobian matrix which contains non-
linear coupling terms between its elements is evaluated for
solving the equation system through the Newton–Rhapson
algorithm, numerically evaluating derivatives of the source
term (dp/du).
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Table 5
Accuracy, temporal performance and stability evaluation for a BSA
ion-exchange chromatography on 201 mesh points

Accuracy
(L1 error)a

CPU time
(min)b

MOL 1st-order upwind 2.629 95
2nd-order central –c –
5th-order upwind 1.063d 140
3rd-order WENO 1.361 460
5th-order WENO 0.551 710

CE/SE Scheme II
(CFL = 0.73)

Newton iteration 0.638 15

a L1 error atz = 25 cm.
b Rounding-off CPU time during 60 min integration time.
c No convergence.
d Unstable numerical solution.

In the framework of the MOL, the band Jacobian matrix
is constructed with ML= (6− 1)×Nmeshand MU= (6−
3)× Nmesh for all discretization methods. UsingEq. (35a),
the maximum number of non-zero Jacobian elements is
JMOL

max = (31Nmesh+ 2)Nmesh. However, it would be ade-
quate for the Jacobian matrix to be constructed by the sparse
matrix technique rather than the band matrix, because the
actual number of non-zero elements inside the band matrix
(JMOL) is less than 1% ofJMOL

max . In this study, since the
band Jacobian is numerically evaluated because of the com-
plex adsorption isotherm model, much longer computational
time will be required for the MOL. The number of mesh
points isNmesh = 201 equally for the CE/SE method and
the MOL.

In the two-component ion-exchange problem,Table 5
shows the CPU time for simulation of 60-min operation time
and accuracy of solutions atz = 25 cm for 60 min. To evalu-
ate the accuracy, the reference solution is obtained from the
CE/SE method on 401 mesh points withν = 0.727, where
the computational time is about 60 min. Even though the Ja-
cobian of the adsorption isotherm is numerically evaluated
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Fig. 8. Breakthrough curve of the protein (BSA) according to numerical schemes for the BSA–NaCl ion-exchange problem.

for the CE/SE method, its computational time is much faster
than those of the five different MOL due to the small size
of the block diagonal Jacobian matrix.

The 2nd-order central discretization scheme (2nd-order
central) does not give reliable solutions, because substan-
tial oscillations of liquid concentrations including negative
values lead to non-convergence in solvingEq. (A.13). The
5th-order upwinding scheme (5th-order upwind) also pro-
duces some oscillatory behavior (seeFig. 8) and its accu-
racy is not substantially improved. The two WENO schemes
guarantee non-oscillatory solutions but require long com-
putational times. It is interesting that solution accuracy of
the 5th-order WENO scheme is comparable to that of the
CE/SE method. However, solutions of the CE/SE method
are obtained with much faster computational time.

The peak shape of the breakthrough curve is character-
ized by a sharpening front and tailing rear. InFig. 8, the
breakthrough curves atz = 25 cm (or the exit of the column)
are depicted according to the numerical schemes. As stated
earlier, an overshoot is appearing near maximum concen-
trations in the 5th-order upwinding scheme. The 5th-order
WENO scheme and the CE/SE method withν = 0.727 show
good agreement with the reference solution. It is worth not-
ing that the chromatographic adsorption problem is not stiff
but demonstrates steep fronts, and a high CFL number (ν)
can be used.

In Fig. 9, the salt and total liquid concentrations are shown
on the basis of the equivalent molar concentration (meq./l).
If the hindered salt ion ratio in the steric mass-action model
(Brooks & Cramer, 1992) is equal to zero(σ = 0), the salt
concentration would be constant atCNaCl = 207 meq./l and
the total concentration (CBSA + CNaCl) would mimic the
profile of the BSA liquid concentration inFig. 8. However,
since salt ions (Cl−) are sterically hindered on the surface
of resin particles by adsorbed BSA proteins, the salt liq-
uid concentration decreases and the chloride ions are bound
within the resin.
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4. Conclusion

In this paper, the space–time CE/SE method is extended to
solve partial differential algebraic equation (PDAE) systems,
by including a Newton iterative method for solving nonlinear
algebraic equations. The CE/SE method is compared with
the MOL with high accuracy upwinding schemes in terms
of accuracy, computational performance and occurrence of
spurious solutions for chromatographic separation problems
described by a non-stiff PDAE system.

In the case studies presented, the current CE/SE scheme
has the best numerical performance among the six test
schemes. This feat, at least partially, is due to the fact that
the CE/SE method enforces flux conservation in space–time
and, therefore, is inherently adept at resolving steep or
shock moving fronts. The current CE/SE scheme is also
easy to implement because, using a space–time mesh, the
convection, diffusion and reaction terms can be discretized
in a straightforward manner. For stability, the spatial mesh
interval and the time step size specified may need to sat-
isfy the CFL condition only. However, to meet accuracy
requirement, they may be subjected to stricter constraints.
This is particularly true when the system is stiff. As such,
an effort to extend the current scheme for application to
stiff chromatographic adsorption problems is under way.

Finally noted that, because the current study represents the
first application of the CE/SE method to chromatographic
adsorption problems, the CE/SE algorithm presented here
must be considered as a scheme still in its earlier stage of de-
velopment. Thus, in spite of the promising numerical results
presented, the advantages and disadvantages of the CE/SE
method (as compared with other established methods) can
only be evaluated objectively through future studies.

Appendix A

The bovine serum albumin (BSA) showing pI= 4.7–4.9
andMw ≈ 69 kDa (Raje & Pinto, 1997) is adsorbed on a

weak anion resin (Matrex PAE-1000) in an isocratic mode
(CNaCl = 207 mmol/l). For the anion-exchange between
BSA and Cl−, the mass action law (or equilibrium constant)
is expressed:

Kji = āi

ai

(
aj

āj

)zi/zj

(A.1)

whereKji is the equilibrium constant fori-component (BSA)
to be adsorbed on the resin saturated withj-component
(Cl−). zi is the ion valence fori-component, wherezBSA =
4.9107 andzCl− = 1. ai andāi are the activities in the liquid
and solid phases, respectively, defined as follows:

ai = γiCi, i = BSA or Cl− (A.2)

āi = γ̄iziyi, i = BSA or Cl− (A.3)

whereγi and γ̄i are the liquid and surface activity coeffi-
cients, respectively, andyi is the mol fraction in the solid
phase:

yi = n∗
i

nT
, i = BSA or Cl− (A.4)

Note that (i) n∗
i has the units, (mmol/kg-resin), not

(meq./kg-resin), and (ii)n∗
Cl− will not stoichiometrically be

bound on the resin because the adsorbed salt counter-ions
(Cl−) may be sterically hindered by the macromolecule
(BSA). The steric mass action is modeled as inBrooks and
Cramer (1992):

nT = zBSAn
∗
BSA + zCl− n̂

∗
Cl− + zCl−n

∗
Cl− (A.5)

where nT is the resin capacity and̂n∗
Cl− is the hindered

salt concentration expressed asn̂∗
Cl− = σn∗

BSA. As a result,
Eq. (A.5) is:

nT = n∗
BSA(zBSA + σ)+ n∗

Cl− (A.6)

whereσ is the steric factor (or molar ratio of the hindered
salt to proteins) which is set toσ = 24.0 for the BSA–NaCl
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system. Thus,yCl− means inEq. (A.3)the molar fraction of
Cl− excluding the hindered salt ions (n̂∗

Cl− ).
The liquid activity coefficient for BSA is assumed to be

γBSA = 1 because protein solutions are in most cases dilute
but γNaCl is defined by a Debye–Hückel model (Bromley,
1973):

ln(γNaCl)= −0.511
√
I|z+z−|

1 + √
I

+ (0.06+ 0.6B)|z+z−|I
(1 + 1.5I/|z+z−|)2 + BI (A.7)

whereI is the ionic strength and the absolute value of the
charge product,|z+z−| = 1.0, for the salt. The model con-
stantB is known asB = 0.0574 for NaCl, which is assumed
to be valid for the binary system (BSA–NaCl) because the
protein concentration (CBSA = 0.9 mmol/l) is much lower
than that of the salt (CNaCl = 207 mmol/l). Neglecting the
protein effect on the salt activity, the salt ionic strength is
expressed:

I = 1

2

∑
j=Na+,Cl−

mjz
2
j = mNaCl (A.8)

wheremi is the molarity (mol/kg-solvent). Here, the mo-
larity is estimated on the basis of the molar concentration
(Ci, mmol/l) for this dilute aqueous solution, assuming the
solution density is 1.0 kg/l:

mNaCl ≈ 1.0 × 10−3CNaCl

1 − ∑
j=BSA,NaCl 1.0 × 10−6CjMwj

(A.9)

where the molecular weight (Mw) is (Mw)BSA ≈ 69,000 and
(Mw)NaCl = 58.4 g/mol.

In the isocratic mode,γNaCl ≈ 0.87 at CNaCl =
0.207 mol/l, which is quiet similar to experimental data for
the pure NaCl solution atI = 0.2 in Bromley (1973).

The surface activity coefficient (γ̄i) is given inRaje and
Pinto (1997):

ln(γ̄i) = Si


ln


 2∑
j=1

ωjαji


 + 1 −

2∑
j=1

ωjαij∑2
k=1ωkαkj


 ,

i = BSA or Cl− (A.10)

whereSi is the shape factor (SBSA = 13.55 andSCl− = 1.0),
ωi is the surface fraction andαij is the Boltzmann weighting
factor. The surface fraction is defined:

ωi = Siyi∑2
j=1Sjyj

, i = BSA or Cl− (A.11)

The Boltzmann weighting factor is simply proposed for the
BSA–NaCl system (Raje & Pinto, 1997):

αCl−–BSA = exp

(−mzBSAyBSA

RT× SBSA

)
(A.12)

elsewhereαij = 1.0. Here,m = 18.0 kcal/mol, R =
1.9872× 10−3 kcal/(K mol) andT = (35.4 + 273.15)K. It

is noted that the two model parameters (m and σ) are fit
to the experimental data given inLi and Pinto (1995). In
Fig. 7, experimental data and concentrations predicted by
the model are shown withm = 18.0 andσ = 24.0. Ac-
cording toRaje and Pinto (1997), K12 = 2.175× 1010 at
T = 35.4◦C, in terms of the above units for the solid and
liquid concentrations.

Finally, the equilibrium concentration functions,Eq. (A.1),
are expressed as an implicit function ofCi andn∗

i , as shown
in Eq. (1c):

gi(CBSA, CCl− , n
∗
BSA, n

∗
Cl−) = 0, i = BSA or Cl−

(A.13)

To solveEq. (A.13), the Powell hybrid algorithm (from the
IMSL numerical library) is used, where the relative tolerance
of the variable differences (�yi) is set to 1.0×10−4 and the
Jacobian is numerically evaluated.
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